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The nonlinear inviscid evolution of a vortex patch in a single-layer quasi-geostrophic
fluid and within a background planetary vorticity gradient is examined numerically
at unprecedented spatial resolution. The evolution is governed by two dimensionless
parameters: the initial size (radius) of the vortex compared to the Rossby deformation
radius, and the initial strength of the vortex compared to the variation of the planetary
vorticity across the vortex. It is found that the zonal speed of a vortex increases with its
strength. However, the meridional speed reaches a maximum at intermediate vortex
strengths. Both large and weak vortices are readily deformed, often into elliptical
and tripolar shapes. This deformation is shown to be related to an instability of the
instantaneous vorticity distribution in the absence of the planetary vorticity gradient β.

The extremely high numerical resolution employed reveals a striking feature of the
flow evolution, namely the generation of very sharp vorticity gradients surrounding
the vortex and extending downstream of it in time. These gradients form as the vortex
forces background planetary vorticity contours out of its way as it propagates. The
contours close to the vortex swirl rapidly around the vortex and homogenize, but at
some critical distance the swirl is not strong enough and, instead, a sharp vorticity gra-
dient forms. The region inside this sharp gradient is called the ‘trapped zone’, though
it shrinks slowly in time and leaks. This leaking occurs in a narrow wake called the
‘trailing front’, another zone of sharp vorticity gradients, extending behind the vortex.

1. Introduction
Isolated coherent vortices are ubiquitous in planetary atmospheres, in the oceans

and, generally, in rotating, stratified fluids. One of the most striking examples is
Jupiter’s Great Red Spot. These vortices appear in various forms, but are most fre-
quently monopolar or dipolar. They are characterized by their longevity (lifetimes
greatly exceeding their characteristic rotation time) and their ability to withstand
the background turbulent fluctuations ever present in real flows. An important con-
sequence is that vortices tend to trap and advect fluid particles over lengths much
greater than their characteristic size. For vortex dipoles, such non-diffusive tracer
transport is enabled by the mutual propagation of the constituent vortex pair while,
for monopolar vortices, it may be enabled by an ambient potential vorticity gradient.
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In the oceans, for example, monopolar vortices called Gulf Stream rings are formed
from the meandering of the Gulf Stream (Fuglister & Worthington 1951). These
vortices largely retain their distinctive thermal, chemical and biological contents, and
as such have considerable influence on the surrounding environment. Here, in this
paper, we focus on the propagation and stability of these monopolar vortices within
an idealized background planetary vorticity gradient, namely a β-plane.

Numerous studies of this topic have been made in the past few decades. Approaches
include theoretical (Adem 1956; Flierl 1977; Sutyrin 1987, 1988; Reznik 1990, 1992;
Sutyrin & Flierl 1994; Sutyrin & Morel 1997), numerical (McWilliams & Flierl 1979;
Meid & Lindemann 1979; Sutyrin et al. 1994) and experimental (Firing & Beardsley
1976; Carnevale, Kloosterziel & van Heijst 1991). Extensive discussions of vortex
drift on a β-plane and the associated Rossby wave radiation can also be found in the
past literature (see e.g. Sutyrin 1987, 1988 and McDonald 1998). Nonetheless, a full
understanding of the nonlinear flow development up to late times is lacking in our
view, and it appears to be beyond analytical treatment.

The purpose of the present work is to provide an accurate picture of this late
and complex stage of evolution, and to point out its most salient characteristics. We
shall study the circular vortex patch model which, arguably the simplest conceptually,
has not yet been adequately examined owing to technical difficulties arising from the
vorticity discontinuity at the vortex edge. Sutyrin & Flierl (1994) have examined the
short-time behaviour of this model analytically; here we shall present high-resolution
numerical results for the long-term behaviour.

The dynamics of an isolated vortex on a β-plane is governed by two inter-related
processes: (i) the generation of a residual (or regular) flow by the redistribution of am-
bient potential vorticity within the planetary vorticity gradient, and (ii) the deforma-
tion of the vortex (cf. Sutyrin & Flierl 1994). Using a vortex patch model, one can track
the detailed movement and deformation of the vortex boundary without encountering
the difficulty and ambiguity intrinsic to Gaussian or other (continuously) distributed
vortices. The vortex patch model allows one to deduce straightforwardly the flow aris-
ing from the vortex and thus to dissociate these two processes for separate analysis.

Owing to the nonlinearity of the governing equations, the long-term evolution
of a vortex patch can only be treated by direct numerical simulation. However,
in general it is difficult to simulate flows with vorticity discontinuities, since most
numerical methods depend on down-gradient diffusion of some sort for stability.
Contour dynamics (CD, see Dritschel 1989), which seems to be the only appropriate
scheme for this type of problem, is not satisfactory either. The reason lies in its
lack of efficiency when a multitude of contours are followed – this is the case for
β-plane geometry as we shall see shortly. As a consequence, there has been little
previous work on the long-term behaviour of vortex patches on a β-plane. Perhaps
the most closely related work is that of Sutyrin & Morel (1997), who studied this
problem both analytically and numerically. For their numerical simulations, they used
a hyperviscous pseudo-spectral method, which compromised the long-time accuracy
of their solutions. In particular, the sharp gradients at the vortex boundary, and those
created during the vortex evolution, were not well resolved.

Here, we re-examine this problem numerically using a hybrid numerical algorithm,
the contour-advective semi-Lagrangian (CASL) algorithm (Dritschel & Ambaum
1997). This algorithm combines the most efficient and accurate aspects of CD and
the pseudo-spectral method, leading to a huge gain in efficiency for a given accuracy.

The purpose of this paper is two-fold: first, to describe the CASL application to
β-plane geometry, and second, to study the long-time behaviour of initially circular
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vortex patches with different sizes and strengths on the β-plane. The formulation of
the model problem, to be investigated in the context of the equivalent barotropic
quasi-geostrophic (QG) approximation, is introduced in § 2. A decomposition of the
whole flow field into regular and singular parts is described in the second half of
this section. These two parts are respectively related to the induced residual flow
generated by the redistribution of ambient potential vorticity and by the deformation
of the vortex. Details of the numerical implementation of the CASL algorithm for
β-plane geometry are discussed in § 3. There, the evolution of the potential vorticity
field is illustrated in several representative cases. Many well-known features, such as
tripolar structures and the trailing front, are here obtained at extraordinarily high
resolution. In § 4, we present quantitative results for the vortex trajectories, while in
§ 5 we examine the vortex deformation and its relation to the stability of the local
vorticity distribution. In § 6, we focus on the development of sharp potential vorticity
gradients at the periphery of the trapped zone and in the ‘trailing front’ or wake of
the vortex. Our conclusions are presented in §7.

2. Mathematical formulation
2.1. Model problem

We examine the evolution of an initially circular vortex patch moving on a β-plane.
Let β be the planetary vorticity gradient, Rd the Rossby deformation radius and ψ the
streamfunction. The equivalent barotropic QG equation (Pedlosky 1987), describing
the material conservation of QG potential vorticity (denoted as PV hereinafter) in a
single-layer shallow-water fluid is given by

Dq

Dt
≡ ∂q

∂t
+ J(ψ, q) = 0, (2.1)

where

q = ω + βy, ω = (∇2 − R−2
d )ψ. (2.2)

J(. , .) and ∇2 are the Jacobian and horizontal Laplacian operators respectively. The
horizontal flow u ≡ (u, v) is non-divergent and thus can be expressed as

u = −∂ψ
∂y
, v =

∂ψ

∂x
. (2.3)

Cartesian coordinates are adopted with positive x eastward and positive y northward.
Note that the PV drives the entire flow evolution; its instantaneous distribution
wholly determines the velocity field, and this field advects the PV to the next instant
of time. Although this ideal property does not carry over in its entirety to the
unapproximated equations governing atmospheric and oceanic motions, it is often
an excellent approximation (see Hoskins, McIntyre & Robertson 1985). The real
limitation of the present model is the use of just one layer.

The initial condition considered consists of a circular vortex patch with uniform
PV anomaly:

ω(x, y)
∣∣
t=0

=

{
ω0 = constant if

√
x2 + y2 < R;

0 otherwise,
(2.4)

where R denotes its radius. Apart from the limiting cases Rd = 0 or β = 0, we may
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take, without loss of generality,

β = 1, Rd = 1. (2.5)

The total number of parameters is thus reduced to two: ω0 and R. Equations (2.1)–
(2.5) constitute the complete mathematical description of our model problem. The
evolution for other values of β and Rd can be related to this model form by a simple
rescaling on the characteristic Rossby wave time and length scales:

T = (βRd)
−1, L = Rd, (2.6)

which leads to the following relationships:

ω0 =
ω∗0
βRd

, R =
R∗

Rd
, (2.7)

between the original parameters (marked with an asterisk) and the model parameters.
Note that there are two different intrinsic time scales in this problem. One is the fast
time scale associated with the swirling velocity field due to the PV anomaly 4π/ω0.
The other is the slow time scale associated with the Rossby wave propagation T . The
latter time scale characterizes the propagation of the vortex, and here we consider
t� T .

2.2. Flow decomposition

We decompose the flow as follows:

q = qs + qr, ψ = ψs + ψr (2.8)

where

qs = (∇2 − 1)ψs, qr = (∇2 − 1)ψr + y. (2.9)

The quantity qs is the PV anomaly of the vortex patch, i.e.

qs(x, y, t) = ω0 χD(x, y) (2.10)

where D specifies the region which the vortex patch occupies at time t and the
characteristic function χD equals 1 inside D and 0 elsewhere. Conventionally, qs and
qr are termed the singular and regular parts (ψs and ψr likewise) although here qs is
not strictly singular in the sense that its value is bounded throughout the domain.
The motion of the vortex boundary ∂D is described by dx/dt = u(x, t) for all
x ≡ (x, y) ∈ ∂D. Hence, from (2.1) and (2.4), we have

qr(x, y)|t=0 = y (2.11)

and

Dqr
Dt

= 0. (2.12)

Equation (2.12) shows that the quantity qr is a pointwise conservative field generating
the regular flow ψr in the presence of the planetary PV gradient. This decomposed
system (2.10)–(2.12) provides the basis for the implementation of the CASL algorithm.
A similar decomposition has been introduced for point vortices (Reznik 1990, 1992)
which, however, does not represent the effect of vortex deformation.
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3. Numerics
3.1. The algorithm

The piecewise-constant nature of the initial condition (2.4) poses difficulties for
conventional methods such as finite difference methods (cf. McWilliams & Flierl
1979) and spectral methods (cf. Sutyrin et al. 1994). In fact, the real difficulty lies not
so much with the initial conditions but rather with the inviscid character of the flow. In
time, even smooth initial conditions tend to develop practically infinite PV gradients.
Conventional methods simply cannot deal with such situations efficiently; significant
dissipation must be used to control numerical stability, which implies a continuous
erosion of sharp gradients as they try to form (see Mariotti, Legras & Dritschel 1994
and Yao, Dritschel & Zabusky 1995). This erosion can have a significant influence on
solution accuracy, as demonstrated recently by Dritschel, Polvani & Mohebalhojeh
(1999).

The difficulty of maintaining numerical accuracy when sharp gradients form can
be avoided by using contour dynamics (CD, Dritschel 1989), in which dissipation
is produced by surgery only and is negligibly small. However, for complex flows,
such as considered here, where many auxilliary contours are needed to represent the
background planetary vorticity, CD is simply not efficient. Its cost grows with the
square of the number of points n used to represent the contours. To improve the
efficiency of CD, Dritschel & Ambaum (1997) combined parts of CD with a standard
pseudo-spectral method. In this hybrid algorithm, called the ‘contour-advective semi-
Lagrangian’ (CASL) algorithm, the slowest aspect of CD – computing the velocity
on the contour points – is replaced by a two-step procedure: first, the velocity field
is obtained on a regular grid by a conventional spectral approach, and second, this
velocity is interpolated onto the contour points. The spectral approach is generally
much faster at computing the velocity field, which here amounts only to inverting the
Helmholtz operator on the field of PV and taking x and y derivatives of the resulting
streamfunction. This requires the PV at grid points, and this PV is obtained using a
fast-fill algorithm at O(n) cost. The evolution of the PV field is computed by contour
advection, i.e. by solving a system of o.d.e.’s for the contour points, thereby avoiding
the CFL stability constraint associated with grid-based advection. The upshot is that
the total numerical cost is O(n) plus O(N2), where N is the grid resolution, compared
with O(n2) in CD. In practice, modest grid resolution can be used while still achieving
high overall accuracy.

As mentioned in the previous section, we shall deal directly with the decomposed
system (2.10)–(2.12), rather than with the original system (2.1)–(2.5). This amounts to
advecting the vortex boundary ∂D and the isolines of qr by the total velocity field
u = (u, v), where

u = − ∂

∂y
(ψs + ψr), v =

∂

∂x
(ψs + ψr) (3.1)

and where the streamfunctions ψs and ψr are found from (2.9).
The flow is simulated within a doubly periodic square domain of size [−l, l], with

l = 5π here. The coarsest horizontal grid resolution is n̄h = 512 in each direction, and
the PV contour-to-grid conversion is done on a grid twice as fine in each direction
(mg = 2). Surgery, or the removal of fine-scale filamentary PV, is applied at the
cut-off scale δ = 1 × 10−3 to control the growth of number of contour nodes in
prolonged calculations. See Dritschel & Ambaum (1997) for further details of the
CASL algorithm, and Dritschel et al. (1999) for a comparison with other conventional
methods.
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Figure 1. An isometric view showing the initial distribution of PV before (dotted) and after (solid)
discretization, as given by equation (3.4). The shaded surfaces correspond to the PV discontinuities
introduced by discretization, i.e. the β-contours.

To be compatible with the CASL algorithm, the initial (linear) distribution of qr
(2.11) must be discretized into a finite number of steps – see figure 1. The simplest
way to do this is to use a certain number, say nβ , of equally spaced steps. These are
zonal contours placed at the following positions:

y = (k − 1
2
) dβ − l, k = 1, . . . , nβ, (3.2)

where

dβ =
2l

nβ
. (3.3)

This corresponds to a discretized qr distribution of the form

qr(x, y)|t=0 =

[
y

dβ
+

1

2

]
dβ (3.4)

where [ . ] denotes the integer part. Figure 1 illustrates the initial distribution of total
PV, q, before and after discretization. While qr is not y-periodic, qr − y is, and this is
all that is required to obtain ψr .

The number of β-contours, nβ , as well as the values of n̄h, mg and δ, limit the
accuracy of the numerical simulation. Finite nβ introduces a source of error which
can be kept small if

l

nβR
6 1 and

l

nβ |ω0| � 1, (3.5a, b)

or, in terms of the dimensional quantities l∗, R∗, ω∗0 and β (see (2.7)), if

l∗

nβR∗
6 1 and

βl∗

nβ |ω∗0 | � 1. (3.6a, b)

The first criterion guarantees a sufficient resolution of the β-effect across the vortex,
while the second ensures that the PV jump across each contour is small compared to
the magnitude of the PV anomaly. In other words, the smaller or weaker the vortex
is, the more steps that have to be used.
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Vortex R ω0 nβ l/nβR l/nβ |ω0| Figure Behaviour

A 0.25 20 150 0.42 5.2× 10−3 2 weak
B 80 1.3× 10−3 3 moderate
C 240 4.4× 10−4 4 strong

D 1.0 5 50 0.31 6.3× 10−2 5 weak
E 20 1.6× 10−2 6 moderate
F 80 4.9× 10−3 7 strong

Table 1. Parameters used in the numerical simulations. The parameters common to all simulations
are: l = 5π, n̄h = 512, mg = 2 and δ = 1× 10−3. The classification of the characteristic behaviour is
based on observation.

Of course, in principle one would like to choose a very large value of nβ , but in
practice the limited computational resources available force a compromise between
accuracy and efficiency. In the present work, we have compared simulation results
for increasing nβ until the contour shapes converge to within a desired accuracy.
Empirically, it suffices to have l/nβR ∼ 1 and l/nβ |ω0| ∼ 10−1 for an error tolerance
consistent with the prescribed values of n̄h, mg and δ (see Legras & Dritschel 1993
for further remarks; see also Dritschel & Ambaum 1997).

Finally, the finite domain size constrains the duration over which the simulations
can reliably approximate the vortex motion in an unbounded domain. This duration
is chosen to be the time that it takes the fastest Rossby wave to propagate across the
computational domain, or t = 28 here. Since the maximum wavelength admissible
to the square domain is 2l, i.e. the length of its edge, the actual non-dimensional
maximum Rossby group velocities are cg,max = 1/(1 + (π/l)2) ≈ 0.9615 westward and
cg,max/8 eastward in the present study where l = 5π.

3.2. Numerical results

Direct numerical calculations have been performed to investigate the long-term be-
haviour of vortex patches over a range of sizes R and strengths ω0. Only two sets of
representative numerical simulations are described here: R = 0.25 and 1.0, each with
three different strengths ω0. A list of the parameters for each simulation is given in
table 1, and the corresponding PV evolution is given in figures 2 to 7. Note that, in
these figures, only a fraction of the β-contours used is shown.

Just as with distributed cyclonic vortices, the vortex patches considered here demon-
strate a characteristic northwest migration on the β-plane, i.e. β-drift. This migration
is accompanied by Rossby wave radiation, particularly in the wake of the vortex.
Both of these phenomena are caused by the redistribution of ambient PV. Under the
influence of the swirling singular (or vortical) flow ψs, β-contours initially begin to
wrap around the vortex. The corresponding redistribution of ambient PV leads to
the development of a dipolar asymmetry in the regular flow ψr , a pattern termed
‘the β-gyres’ (Peng & Williams 1990; Smith & Ulrich 1990). These β-gyres in turn
propel the vortex zonally and meridionally. In time, higher modes of asymmetry
emerge in ψr . These asymmetries generate Rossby waves in the wake and perturb
the boundary of the vortex. This can result in some interesting phenomena if the
boundary deformation is unstable (see § 5 below).
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Figure 2. A CASL simulation of the evolution of vortex A (R = 0.25 and ω0 = 20) on a β-plane.
The frames show the moments t = 7.0, 14.0, 21.0 and 28.0, from top to bottom. The domain shown
is [−l, l]× [−0.25 l, 0.75 l], in which only one out of every three β-contours are shown for brevity.

4. Beta-drift
An advantage of the vortex patch model is that the vortex is completely specified by

its boundary. That is, all of the vortex properties, such as its position and deformation,
can be deduced from the vortex boundary alone.
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Figure 3. Same as figure 2, except that ω0 = 80, i.e. vortex B.

The trajectory of a drifting vortex can be described quantitatively given a sensible
definition of its centre. Several definitions have been used before, including the
vorticity extremum, the streamfunction extremum, and the position of the particle
initially at the centre of the vortex (always taken to be circular). The differences
between these definitions are discussed by Reznik & Dewar (1994) and Llewellyn
Smith (1997). In the present model (and perhaps in general), it is natural to use the
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Figure 4. Same as figure 2, except that ω0 = 240, i.e. vortex C.

centroid (x0(t), y0(t)) as the vortex centre. This choice is natural because it results in
vanishing first-order moments in an expansion of the velocity field exterior to the
vortex (Dritschel 1993).

In practice, surgery at small scales may cause the vortex patch to fragment, here
mainly into filamentary debris surrounding the main vortex. The centre is then
calculated from the largest-area contour containing fluid from the original vortex.



The beta-drift of an initially circular vortex patch 117

Figure 5. Same as figure 2, except that R = 1.0 and ω0 = 5, i.e. vortex D. For this bigger vortex
patch, all β-contours are shown.

Note that the boundary deformation, at least before surgery, does not have a
direct impact on the motion of the vortex centre. This is because the singular (or
self-induced) flow ψs vanishes at the centroid. The trajectory is thus determined by
the accumulated effect of the regular flow ψr only.

The computed trajectories for R = 0.25 and 1.0 are shown in figure 8. It is clear
that, for both values of R, the zonal speed increases with the strength ω0 of the vortex.
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Figure 6. Same as figure 5, except that ω0 = 20, i.e. vortex E.

On the other hand, the meridional speed is not monotonic; vortices of intermediate
strength exhibit the largest meridonal speed (see vortices B and E). This remarkable
phenomenon was also noted by Rasmussen et al. (1994, figure 2b) and Sutyrin et al.
(1994) for Gaussian vortices. The latter authors attributed this phenomenon to the
interaction between the vortex and radiating Rossby waves.

The zonal speed appears to be bounded by the maximum westward group speed of
Rossby waves cg,max (see § 3), and the meridional speed by the maximum meridional
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Figure 7. Same as figure 5, except that ω0 = 80, i.e. vortex F.

group speed of Rossby waves, which can be shown to be 0.25 non-dimensional units
in our present work (compare with the triangles and diamonds in figure 8). This
observation is consistent with the results obtained by McWilliams & Flierl (1979) and
Meid & Lindemann (1979) who considered Gaussian vortices. Unless they undergo
severe deformation (as in the case of vortex D), vortex patches drift at a quasi-steady
speed over the time span considered.
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Figure 8. The trajectories of the vortex centre for (a) R = 0.25 (vortices A to C) and (b) R = 1.0
(vortices D to F). The crosses (+) specify the instantaneous positions of the vortex centre at time
intervals of 7 nondimensional units. The triangles (4) and the diamonds (�) on the axes indicate
the corresponding zonal and meridional displacement of a point moving at both maximum zonal
(cg,max) and maximum meridional (0.25) Rossby group speeds. Note that the fourth diamond is
outside the axis frame.

5. Deformation and instability
Perturbations to the initially circular vortex boundary develop as soon as the regular

flow ψr is established. Here, the leading-order, elliptical boundary deformation of a
vortex is quantified in terms of the aspect ratio λ (6 1) of an analogous ellipse with
identical second-order spatial moments (Legras & Dritschel 1991). The variation of
λ with time t for our simulations is displayed in figure 9. By comparing parts (a)
and (b), one may observe that small vortices (R = 0.25) in general remain circular
for longer than do large vortices (R = 1.0). For each value of R, it is also found
that the stronger vortices are less vulnerable to deformation. This is logical, as strong
compact vortices are less affected by the strain arising from the surrounding Rossby
wave field.

Let us now restrict attention to the large vortices first. The weakest such vortex
(vortex D) deforms rapidly and is soon torn apart by the straining field present in ψr .
The other two stronger vortices (vortices E and F), however, are able to maintain their
identity throughout the simulations. An important feature to note for these vortices
is the formation of an annulus of fluid which moves along with the vortices. This
annulus of fluid is called the trapped zone (cf. Korotaev & Fedotov 1994). It consists
of relative vorticity of the opposite sign acquired as the vortex displaces meridionally
(a consequence of the conservation of PV). As a result, the vortex becomes shielded,
i.e. its net circulation (including the annulus) tends to zero in time.

At this stage of evolution, the vortex evolves in a quasi-steady way. In time, the
vortex may deform into an ellipse and may suddenly destabilize, fragmenting into
smaller structures. This behaviour, as shown below, can be understood by considering
the linear stability of the vortex in the absence of the β-effect, following an earlier
analysis by Flierl (1988).

To set the stage, we first need to define the trapped-zone radius R̃ (the outer
boundary of the annulus). A polar coordinate system (r, θ) is fixed at the vortex
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Figure 9. The temporal variation of the aspect ratio λ of the vortex boundary for (a) R = 0.25
(vortices A to C) and (b) R = 1.0 (vortices D to F).

centre such that

x− x0 = (r cos θ, r sin θ), (5.1)

where x = (x, y) and x0 = (x0, y0). The regular part qr(t, r, θ) is expanded as follows:

qr − y = q0(t, r) +

∞∑
n=1

(qcn cos nθ + qsn sin nθ). (5.2)

The structure of the first few modes (q0, q
c
1 and qs1) for vortices B and C is given

in figure 10. Note the steep jump in q0 at the time shown. This is anticipated to be
a general feature as discussed in the next section. Between the steep jump and the
origin, q0 resembles a flat-bottomed well, where the PV has been homogenized by the
rapid swirling flow in ψs. It is reasonable, therefore, to identify the position of this
steep jump as the trapped-zone radius R̃.

In practice, we define R̃ to be the radius from the vortex centre to the mid-point
of two consecutive radial nodes r1 < r2, separated by a distance equal to the size of
the fine underlying grid, where

q0(r2)− q0(r1) (5.3)

is maximum. (If such a mid-point is not unique, we choose the one furthest from the
vortex centre. This is sufficient because q0 is generally smooth outside the trapped
zone.) The average relative vorticity acquired inside the trapped zone is approximated
by minus y0 (this is an excellent approximation, as can be seen by comparing the
flat-bottom value of q0 in figure 10 with the corresponding position of the vortex
centre in figure 8a).

The Appendix describes the derivation of the linear stability criterion for various
modes of boundary perturbation. Basically it repeats the calculation of Flierl (1988),
except that Flierl considered a barotropic basic flow (Rd = ∞). In our present work,
both the basic flow and the disturbances are equivalent barotropic (Rd is finite).
Figure 11 shows the part of the (y0/ω0, R̃/R)-plane which is unstable to m = 2
(elliptical) and m = 3 modes along with the results obtained by direct numerical
simulation (cf. figure 6 of Flierl 1988). Figure 11(a) shows the case R = 0.25, ω0 = 20
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Figure 10. The Fourier decomposition (see (5.2)) of the regular part qr for (a) vortex B and (b)
vortex C at time t = 21.0. The vertical dotted line indicates the trapped-zone radius R̃ which is
defined to be the radial distance from the vortex centre with the maximum gradient of q0.
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Figure 11. Stability curves for m = 2 (bold) and m = 3 (thin) wavenumbers for (a) vortex A and
(b) vortex E. The regions enclosed by these curves are unstable. Circles (◦) joined by dotted lines
are obtained from the numerical simulations.

(vortex A) while 11(b) shows the case R = 1.0, ω0 = 20 (vortex E). It should be
noted that the value of R̃ calculated by our method is inaccurate at the beginning
of the simulation when the trapped zone has not been well established. This method
also breaks down when the vortex suffers severe boundary deformation. This is the
reason for the abrupt decrease and subsequent fluctuation in the value of R̃/R around
y0/ω0 ≈ 0.13 in figure 11(b). This sharp decrease, in fact, corresponds to the moment
when the tripolar vortex emerges in case E. Generally, an initial increase in R̃, followed
by a gradual decrease, is observed for both small and large vortices.
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Figure 12. The detailed development of the rotating tripolar structure (first shown in figure 6)
is revealed with the help of an initially circular passive tracer contour of radius r = 1.5 (outer
contour). The inner contour is the vortex boundary.

Figure 11(b) shows that vortex E has traversed a large part of the unstable region
for the elliptical (m = 2) mode. This vortex severely deforms and a rotating tripolar
structure emerges, a manifestation of the mode-2 instability (cf. Carton & Legras
1994). This phenomenon was also observed for isolated Gaussian vortices moving on
a β-plane, as noted by Sutyrin et al. (1994). The detailed development of the tripolar
structure is displayed in figure 12 with the help of an outer passive tracer contour. The
tripolar rotation and the elliptical vortex core together cause the vortex to wobble, as
seen in the wavy shape of its trajectory in figure 8. By contrast, the small vortex A
(of the same strength) in figure 11(a) falls into the unstable region for m = 2 only in
its late stage of evolution. Figure 2 shows that this vortex remains stable until t = 28
(last frame shown), when a small tripolar structure emerges.

It should be remarked that the actual evolution of the vortex is intrinsically
nonlinear. A slight discrepancy is therefore expected between the actual onset of
instability and that predicted by linear theory. Moreover, that theory neglects β.

6. Formation of steep PV gradients
As shown in figure 10, a steep PV gradient in q0 exists near the periphery of the

trapped zone. This trapped zone is formed by the entrainment of fluid from the
vicinity of the drifting vortex. It moves along with the vortex and forces the external
iso-PV contours (β-contours) out of its way. Since such contours are material curves,
they cannot be crossed by any of the fluid particles advected along with the vortex.
Thus, as the vortex approaches, these contours embrace the trapped zone and are
subsequently dragged along with it (but not trapped by it). The repeated engulfment
of the trapped zone by these external iso-PV contours results in the development of
a steep PV gradient.

Another steep PV gradient develops in the wake of the vortex, and is called



124 J. S.-L. Lam and D. G. Dritschel

t = 0

t = 7.0

t = 14.0

t = 21.0

t = 24.0

t = 26.0

t = 28.0

t = 30.0

Figure 13. The formation of the trailing front and the sharp PV gradient around the trapped zone
is illustrated by the evolution of two selected β-contours, namely y = 0.42π and 1.5π, for the vortex
B (R = 0.25 and ω0 = 80). The closed contour is the vortex boundary. The domain is shifted by
0.5π eastwards. At t = 21 and 24, we see that these two β-contours, being pushed northwards by
the vortex, approach each other. Parts of these contours become coincident and indistinguishable
subsequently, indicating the presence of very large PV gradients there.

the ‘trailing front’. It is formed by the same mechanism as described above. This
front grows in length as the vortex propagates. The trailing front provides the only
communication (of fluid particles) between the trapped zone and the rest of the
domain. In fact, the trapped zone leaks, and it leaks directly into the ribbon of fluid
along the trailing front.
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The formation of these steep PV gradients is vividly depicted in figure 13, which
shows the detailed evolution of selected β-contours for vortex B. It is remarked that
the mechanism described above is applicable to distributed vortices as well. Steep PV
gradients are anticipated to form in any inviscid evolution of an isolated vortex on
the β-plane.

7. Conclusions
The long-term inviscid evolution of an initially circular vortex patch on a β-plane

has been examined at unprecedented resolution using the CASL algorithm. The
successful application of this algorithm demonstrates its effectiveness and robustness
for simulating geophysical flows having a non-uniform ambient PV distribution. Two
criteria have been developed to ensure accurate flow simulations. The first is that
the spacing between ambient PV contours must be small compared to the vortex
diameter. The second is that the PV jump across each ambient PV contour must
be small compared to the vortex PV anomaly. These criteria, summarized in (3.5)
or (3.6), serve as a fundamental guideline for discretizing any initial continuous PV
profile.

The flow decomposition described in this work allows us to split the whole flow field
into two parts. The regular part corresponds to the flow induced by the redistribution
of ambient PV. The singular part corresponds to the flow generated by the vortex.
The singular flow is solely determined by the vortex, or even just its boundary for
a vortex patch. This decomposition turns out to be natural for the implementation
of the CASL algorithm. It also appears to be useful for the analysis of the vortex
motion and deformation.

In our analysis, we have used the centroid as the vortex centre, in terms of which we
have obtained the trajectories of the vortices as a function of their size and strength.
We have found that the zonal speed of a vortex increases with its strength. However,
the maximum (average) meridional speed occurs for vortices of intermediate strength
(for the time span considered in our simulations). The latter conclusion was also
reached in previous studies of distributed (Gaussian) vortices.

Unlike previous studies, we have considered the effect of vortex size. Large vor-
tex patches have been found to deform more readily than small vortices. Moreover,
vortices acquire an annular region of trapped fluid (called the trapped zone) which
cancels the circulation of the vortex core. This trapped zone shrinks in size but be-
comes more intense while the vortex displaces meridionally. Following and extending
the results of Flierl (1988), a linear stability analysis for shielded vortices has been
performed for β = 0. Despite not including the ambient PV gradient explicitly, this
analysis is nevertheless capable of explaining the emergence of tripolar structures in
our simulations via the destabilization of an elliptical boundary perturbation.

Apart from the slight dissipation due to fine-scale surgery, the CASL algorithm
is essentially inviscid. It has enabled us to capture the development of abrupt PV
gradients around the trapped zone and in the trailing front making up the wake of
the vortex. These virtual PV discontinuities are formed by the wrapping of external
iso-PV contours (β-contours) around the trapped zone as the vortex tries to propagate
through them. Without viscosity, these sharp gradients persist and the background
planetary vorticity is permanently modified. Since this mechanism is also applicable
to distributed vortices, steep PV gradients are expected to be a general feature of
vortex motion on the β-plane.

It is also worth mentioning that the observed disruption of the initial planetary
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Figure 14. Cross-section of the two-level circular vortex patch, approximating the local PV field
observed in our numerical simulations.

vorticity gradient undermines the use of such smooth gradients in conjunction with
strong vortices. If no mechanism, such as viscosity, is available to restore a smooth
gradient, the effect of many vortex passages through a region of varying planetary
vorticity must be to focus the gradients into narrow regions, i.e. into jets. This may
explain the predominance of such jets in the oceans, the atmosphere and other
planetary atmospheres.

Finally, it is remarked that a quasi-steady drift speed has been observed for
sufficiently strong vortices, shortly after the simulation commences. Koroteav &
Fedotov (1994) gave approximate analytical formulae for the zonal and meridional
drift speed of an isolated Gaussian vortex (see their equations (4.30) and (4.31)). They
expressed these speeds in terms of the slow-varying meridional displacement of the
vortex. In their derivation, the domain is divided into two parts by the separatrix of
the streamfunction. This separatrix is assumed to be the boundary of the trapped
zone. The corresponding inner and outer solutions are then matched along this
separatrix or the trapped-zone boundary. This domain decomposition technique is in
fact natural to our present problem. As figure 10 in § 5 suggests, the flow inside and
outside the trapped zone is quite different. An attempt has been made by Lam (1998)
to derive corresponding analytical formulae for an initially circular vortex patch. The
domain is divided in the same way. A steady solution corresponding to a dipole with
a zonal axis is obtained for the inner solution for r < R̃ (cf. equation (7.1) of Sutyrin
& Flierl (1994), in which rM stands for the radius of the outermost contour, instead
of the trapped-zone radius). The outer solution is ‘solved’ by a heuristic argument.
Although the inner solution shows a good agreement with numerical calculations,
the outer solution is not accurate enough. Efforts are being made to establish a
better outer solution. Such predictions of the vortex drift speed are important and
worth further research, particularly in the more general context where the ambient
PV gradient is non-uniform (e.g. over topographic features in the ocean). They may
not only allow us to have a better quantitative estimate of the impact (due to passive
tracer transport) of geophysical vortices on their surrounding environment, but may
also enhance our understanding of the role played by Rossby wave radiation in the
propagation of vortices.
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Appendix
The linear stability criterion (corresponding to equation (3.5) of Flierl 1988) for a

circular vortex consisting of two uniform regions of PV (cf. figure 14) on an f-plane
can be shown to be[

V̄ (a)

a
− qaIm

(
a

Rd

)
Km

(
a

Rd

)
− V̄ (b)

b
+ qbIm

(
b

Rd

)
Km

(
b

Rd

)]2

< −4qaqbI
2
m

(
a

Rd

)
K2
m

(
b

Rd

)
(A 1)

where a and qa are the radius of and the PV jump across the inner contour of the
vortex. Likewise b and qb are defined for the outer contour. The integer m denotes
the azimuthal wavenumber of the boundary perturbation, taken to be proportional
to exp (im(θ−σt)) on each contour, where σ denotes the angular velocity at which the
perturbation propagates along both contours of the vortex. The azimuthal velocity
V̄ (r) generated by the unperturbed vortex is determined by[
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V̄ (r) = −qaδ(a− r)− qbδ(b− r) (A 2)

where δ is the delta function. This implies that
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Equations (A 3) and (A 4) are the crucial difference between our present treatment
and that of Flierl (1988). The latter studied a barotropic vortex subject to baroclinic
perturbations and, therefore, the angular velocity along the contours of the vortex
used there is a special case of (A 3) and (A 4) with Rd →∞.

For our present problem, we have

Rd = 1, a = R, qa = ω0, b = R̃, qb = −y0, (A 5)

in terms of which the stability criterion (A 1) becomes[
V̄ (R)

R
− ω0Im(R)Km(R)− V̄ (R̃)

R̃
− y0Im(R̃)Km(R̃)

]2

< 4ω0y0I
2
m(R)K2

m(R̃) (A 6)

and the angular velocities at the PV discontinuities are

V̄ (R)

R
=

[
ω0K1(R)− R̃

R
y0K1(R̃)

]
I1(R), (A 7)
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V̄ (R̃)

R̃
=

[
R

R̃
ω0I1(R)− y0I1(R̃)

]
K1(R̃). (A 8)

For any particular choice of parameters (R,ω0), we can easily verify that (A 6) is a
quadratic inequality in y0/ω0 for any given R̃/R. Therefore, the stability curve has at
most two solutions for y0/ω0 for each value of R̃/R. Figure 11 shows the stability
curves for wavenumbers m = 2 and m = 3 for vortices A and E.
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